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J!lmIoNAL ADVISORY COMMITTEE FOR AERONADTICS 

TECHNICAL NOTE 3037 

MEASURE- IN TURBUXNCE RESEARCH 

By H. W. Liepmann and M. S. Robinson 

This report deals with methods of measuring the probability distri- 
butions and mean values of random functions as encountered in turbulence 
research. Applications to the measurement of probability distributions 
of the axial velocity fluctuation u(t) and its derivative du/dt in 
isotropic turbulence are shown. The assumption of independent proba- 
bilities of u(t) and du/dt, which has been used as an'approximation 
in the application of zero counts to the measurement of the microscale 
of turbulence h, is investigated. The results indicate that the assurq- 
tion is satisfied within a few percent and that there is, so far, no 
evidence that the systematic difference between h measured from zero 
counts and h measured independently can be traced entirely to the sta- 
tistical dependence of u and du/dt. 

The chronological development of apparatus is described, concluding 
with the present lo-channel statistical analyzer based upon a system of 
pulse aqlitude modulation followed by an amplitude discriminator and a 
counter. A discussion of the relative merits of various systems is 
included to indicate the reasons for this choice. 

INTRODUCTION 

Let I(x,y,z,t) represent a quantity such as a velocity component 
or a pressure in turbulent flow. Since turbulence is an essentially 
statistical phenomenon, I(x,y,z,t) will not be representable in the 
same way as an ordinary function but will be defined only by certain 
probability distributions and mean values. Experimental studies of tur- 
bulent flow are thus primarily concerned with the measurement of mean 
values. There are severalways of defining the mean values of I(x,y,z,t). 
Often the rm3st convenient, theoretically, is to define I as an ensemble 
average; that is, one considers N similarly prepared systems, say wtid 
tunnels with the same grid setup, and measures I(x,y,z,t) simultane- 
ously at corresponding points of these N wind tunnels. The N results 
can then be evaluated statistically and yield the probability distribu- 
tion and the desired mean value. 
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merimentally, and also often in theory, one uses instead the time 
average. One observes I(x,y,z,t) for a sufficiently long time in one 
system and defines 

I=& 
s 

T 

‘1! 0 
I(x,y,z,t) dt 

provided this is possible. If there exists a time-independent mean 
value, the integral will reach a constant value for a sufficiently large 
value of T. Clearly one can also use a space average, defined by 

I=+ I(x,y,z,t) dx aY dz 

V 

where V is a certain volume in space. Finally, one can combine the 
latter two and average over both space and time. 

Most of the recent experimental work in turbulent flow is con- 
cerned with flows which are steady in the mean, that is, for which the 
time average exists and for which the time and ensemble averages can 
be rigorously interchanged. Investigations of isotropic turbulence 
behind grids and of wakes, jets, channel flows, and so forth belong to 
this group. Isotropic turbulence set up in a box, on the other hand, 
is clearly a problem for which a time average has no meaning: here, 
evidently, the ensemble average or space average is wanted. 

The mean value of-a power of I, for example I2 or 13, can be 
measured in essentially three ways. First one can use a device which 
squares or cubes the instantaneous value of I(x,y,z,t) and then pro- 
ceed to take the desired mean value. Secondly one may use a device 
which produces the mean of a certain definite power directly, such as 
a thermocouple meter for measuring the time mean square of a current. 
Finally, one may obtain the probability distribution or probability 
density P(E), where p(s) dg denotes the probability of finding I 
between C and 5 + dg, and then obtain all the mean powers of I as 
the moments of p(E). Whether a time or ensemble mean value results 
depends upon the determination of-p(l). If p(g) d5 denotes the 
fraction of time the function I(x,y,z,t) spends between 5 and 
5 + dg divided by the total time T, a time average- is taken. If 
p(e) dg is defined as the number n of systems having values of I 
between 5 and 5 + de divided by the total number of systems, then 
an ensemble average is taken. 
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The methods described below are primarily intended for the measure- 
ment of time averages and are based on this last form of the averaging 
procedure. The original apparatus handled p(g) directly, but it was 
subsequently found more convenient to work-with the integrated proba- 
bility density, or distribution function, F(g), which is defined as 
the probability of finding I(x,y,z,t) with a value greater than E 
and is related to the probability density as follows: 

F(S) = / P(E) 'dE 

Clearly F(G) = 1 and F(m) = 0. It follows that 

SF= -P(E) de (2) 

Although time averages are dealt with here, it is also possible to 
use the same procedures for ensemble averages. 

The apparatus was built with the idea in mind of reducing the prob- 
lem of finding the probability density, or the distribution function, to 
one of pulse counting. The advantages of such a procedure are that 
counting methods permit averaging over almost unlimited intervals of 
time, and pulse-counting circuits are in general very stable and satis- 
factory. This approach grew out of the investigation of the zeros of 
fluctuating-velocity components (ref. l), reported earlier, which 
demonstrated the convenience of pulse-counting methods. 

This work was carried out under the sponsorship and with the finan- 
cial assistance of the National Advisory Committee for Aeronautics. 

The authors wish to express their appreciation to Mr. George Skinner 
for his generous help in the preparation of the manuscript. The original 
gate apparatus was designed and built by Mr. C. Thiele and Dr. H. Wright, 
who furnished very useful advice during the early stages of the work. 
Part of the work reported here was done as early as 1949. The present 
report summarizes both the earlier work and recent developments (ref. 2). 
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SYMBOLS 

time 

amplitude coordinates 

axial velocity fluctuation 
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VW any fluctuating input voltage with zero mean 

h microscale of turbulence 

P(E) 

p(c,q) 

F(E) 

probability density 

joint probability density 

distribution function 

Dimensionless parameters: 

S V3 = = Skewness 
312 

f F = - = Flatness 

For a Gaussian distribution: 

C = - 
r 2 

s 0 = 

f 3 = 

PRINCIPLESOFAPPARATUS 

In all cases the apparatus handles a fluctuating voltage V(t) 
(figs. l(a) and 2(a)) such as the output of a hot-wire and amplifier 
conibination. The term V(t) may represent a velocity fluctuation 
measured at a certain point, its derivative, or so forth. The original 
experimental apparatus was set up to determine the statistical prop- 
erties of V(t) by measuring its probability density step by step, 
using a gate circuit essentially similar to Townsend's "statistical 



NACA TN 3037 5 

. 

i 

analyzer" (ref. 3>' which passes a signal only if the amplitude of V(t) 
lies within a narrow range of voltages. Specifically this circuit pro- 
duces a signal of constant wlituae during the time that V(t) lies 
between 5 and 5 + de, where f is the voltage setting of the gate. 
Hence the operation performed by the gate circuit yields a signal like 
the one shown in figure l(b), consisting of irregularly spaced square 
waves of uniform height. The total area of these square waves, or the 
sum of all their widths, measured over a time interval T, thus gives 
the time Tl which V(t) spends between E and 5 + de durfng T. 
The probability density p(E) dg is defined by stating that p(E) dk 
denotes the fraction of T which V(t) spends between 5 and 5 + dg; 
that is, 

Tl 
~(6) d6 = r 

To measure the sum of the widths of the square segments of fig- 
ure l(b), a counting method is used as follows: A pulse generator pro- 
duces equidistant pulses at a rate of, say, M per second (fig. l(c)). 
A coincidence circuit mixes the signals in figures l(b) and l(c), giving 
the result shown in figure l(d). The signal in figure l(d), which con- 
sists of a set of "chopped" square waves, is fed into a counting circuit. 
Let m be the number of counts obtained per second, then evi'dently 

P(C) dE = 2 (4) 

Varying 5. then yields p(E) completely. 
are obtained as the moments; for example, 

s 
P(S) dE 

s 
t3~(s) dg 

7= 

s P(E) dE< 

From p(E) the averages 

. . . . . . . 
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The time over which a count is taken is evidently limited only by the 
stability of the whole setup. Especially important for large values 
of 5, for which p(g) is very small indeed, is the fact that-the time 
of measurement can be increased and the accuracy very much improved. 

This first method lends itself wellt-o direct measurements of mean 
values by making use of Simpson's rule in determining how long to let 
the apparatus run.& -each value of 
the section "Obtaining Mean Values." 

5. This technique is described in 

To reduce the measurin@;~time involved, a number of-gate circuits _ 
can be combined intoa multichannel analyzer, so that p(C) can be 
completely determined in one short-run. However, when a multichannel 
arrangement is considered, it-becomes evident that one should change to 
a system which measures F(e) rather than p(g). The reasons for this 
will be discussed in the sections "Details of Apparatus" and "Errors 
in Apparatus." 

The principles of this multichannel form of the apparatus are 
illustrated in figure 2. Since the counting circuits require their 
information in the form of narrow pulses, the incoming signal V(t) 
is first made to amplitude modulate-a continuous train of pulses 
(fig. 2(b)) i n such a way as to result-in a pattern (fig. 2(c)) which 
lies completely above the zero voltage Une. A discriminator, or re& 
tifier, which is biased to a voltage value of 5 is then used to cut 
off any pulses whose height-does not exceed e (fig. 2(d)). Suffi- 
cient amplification of those pulses which pass the-discriminator is 
provided to insure that each will register in the counting circuit 
which follows. In the multichannel setup, 10 discriminators are used, 
each set at a different E level. These levels are adjustable to per- 
mit the use of all 10 channels for any portion of-the incoming signal 
to obtain, for example, 10 points on the distribution function for 
positive values of- V(t) and 10 points for negative values of V(t) 
by reversing the input signal. 

It will be observed that in passing from V(t) (fig. 2(a)) to the 
train of modulated pulses (fig. 2(c)) the zero level of the signal has 
been lost. This must-be redetermined later using the knowledge that, 
by definition, V(t) is a fluctuating voltage whose mean value is zero, 
giving a value co which corresponds to V(t) = 0. One can then say 
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If, again, the pulse generator supplies a train of pulses at the 
rate of, say, M per second (fig. 2(b)) and m is the nuriber of counts 
obtained per second, then evidently 

OBTAININGMEANVALUES 

Direct Measurement 

With the original gate circuit for measuring p(E), it was possible 
to measure mean values directly, by the application of Simpson's rule; 
that is, the integration giving the appropriate moment of p(C) could 
be carried out with the apparatus itself. 

Assume that the pulse generator furnishes M pulses per second and 
that for a given value of E the count is taken over tS seconds 
leading to a total of 9 pulses counted. Then: 

P(E) dE = "s 
MtE 

or 

mE t.&) de = M 

Assume now that the zero moment a.*, that is, 

(7) 

. 

is to be measured. Using Simpson's rule the integral can be written 
as the sum 

s ow ~(5) d! = Sk(o) .+ 4p(l) + 2p(2) + . . J (8) 



8 NACA m 3037 

if the interval .En - tnWl is put equal-to 1 for c%nverxLence. Similarly 
the other part of the integral may be written 

s 

0 
P(E) de 

-00 = $@o) f 4P(-1) + 2333-2) + . . .] ,.- (9) 

Since p(E) goes to zero for large values of 1 E.1 it is irrele- 
vant how the last point is chosen, provided the sum is extended to large 
enough values of 151. 

Consider equation (7) and choose TV in such a way that to = T, 
$,l = 47, t*2 = 27, and so forth. Then clearly 

> “4 = MT d(O) + 4p(l) + 2p(2)-+ . . c 1 . 
S=O,l,... 

that is, 
= 

> s 

00 
9 = 3MT P(S) de 

E=O,l,... 0 

and similarly 

s 

0 
9 = 3bfT -ma dE 

(10) 

(11) 

Thus if one sets the device successively to 5 = 0, 1, 2, 3, l . ., 

COLEltS time 7) 47, 27, . . . seconds, and leaves the numbers in 
the register the apparatus performs the summation and by virtue of 
equation (1Oj the integration for posit-lve values of 5. By reversing 
the input the integration for negative values of 5 is obtained. 

The procedure can be applied in principle to any momentinte- 
gral an, since 

". 

an= s 

co 
E"P(E) dE n = L, 2, 3, 4, . . . 

-. -w 

i - 

c 
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Now tE is chosen as follows: 

to = 0 t*l = 4T(51)n 

Thus 

trp(5) = 

and thus 
. 

9 

ts = 2T( %9n . . . 

n = 2,4 
5 >‘O 

n = 1,3 

w 
n = 2,4 

5 co 
n = 1,3 

s 
w 

> 9 = ~MT Enp(E) de 
00 0 

(13) 

and 

A procedure like this is sometimes convenient. Since the functions 
are smooth, not very many points are required to approximate the inte- 
grals very closely. It is also evident that this procedure could well 
be performed automatically if the additional apparatus were warranted. 

Short Cuts 

For some applications it is possible to shorten the procedure very 
much by using a known form of p(E). 
represents a velocity fluctuation 

For example, assume that V(t) 

this case one knows that p(E) 
u(t) in isotropic turbulence. In 

1 s 
ThUS: 

very nearly a Gaussian distribution. 

E2 -- 
P(P) = p,(O)e 2-F 
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and hence 

1 El2 --m 

P(kl) = P(Ok 
55 

Thus 

&$Lp= El2 512. 
P(C) = 2 log - mo 
p'(k) 

210g - 
( ) -1 
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- 
a 

v 

(14) 

and thus 2 is obtained as the ratio of'two measurements. Similarly 

E4 can be obtained. 

Computation of Mean Values Using Multichannel Analyzer 

Consider the mean value of the nth power of the input V(t): 

Now 

J P(E) dE = 1 
-03 

so that 
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and by equations (1) and (2) 

Because of the factor. En, the integrand becomes infinite at the limits, 
making it unsuitable for numerical evaluation. This difficulty can be 
overcome by transforming to an integral with respect to the C-axis. 
Splitting the integral into two parts about 5 = 0: 

Vn= 
s 

a 

s 

1 
En dF + En m 

0 a 

a 0 
= 

s 
p m - s En d(1 - F) 

0 l-a 

where F(0) = a. Integrating by parts: 

or 

F= kndid _ k"(1 - F-j:=:+ nk" S"-lF de +dem Sn-'(l - F) dd 
=CO E 

The first two terms vanish at the limits if F(n) approaches zero 
exponentially or faster as S approaches minus infinity. This require- 
ment is always satisfied if the mean value is finite. Therefore 

F=n 
03 

s 

-co 
gn-lF d5 + en-l(1 - F) de 

0 1 (15) 
. 
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The integrals are evaluated numerically by Simpson's. rule, (See fig. 3.) 
Since the main concern in turbulence work is distributions approaching 
a Gaussian form, the fourth moment of a Gaussian distribution was com- 
puted by Simpson's rule, using nine points. The result deviated from 
the theoretical value by less than 1 percent. 

In practice, the'normalization procedure 

r DJ 
P(E) dE = 1 

J -co 

involves dividing the number of counts 
number of pulses generated by the pulse 
time MO so that: 

9 in any register by the total 
generator during the counting 

(16) 

One can conveniently run the generator for 1 minute with a pulse rate 
of 10 5 per minute, so that 

mE mE -=- 
MO 105 

Finally, it may be called to mind once again that the exact posi- 
tion of C = 0 is not known beforehand. Using the fact that the first 
moment of the distribution function is equal to zero (that is, 7 = 0), 
the position of 'this axis may be determined. This procedure has proved 
more satisfactory than any in which one tries to setthe initial "zero" 
pulse amplitude to some known arbitrary value with the accuracy required 
for computing mean odd powers. 

DETAILSOFAPPARATUS 

Original Gate Circuit for p(E) 

. 

The circuit diagrams of the elements are shown in figures 4 and 5. 
The block diagram is given in figure 6, which should be self-explanatory. 
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The mixer will be seen to,be a twin triode normally running saturated 
through a common anode load resistance. Strong negative grid signals 
will cut off the triodes, but a large anode signal will appear only when 
both halves of the tube are cut off simultaneously. The small effect 
of one-half being cut off alone is omitted in the block diagram. It 
should be pointed out that one-half of the first mixer receives a posi- 
tive square wave which causes grid current to flow, thereby building up 
a steady negative bias nearly equal to the peak voltage of that square 
wave, so that it considers itself to be receiving a negative input 
during the periods when this positive square wave is absent. As the 
5 + dg line approaches the peak of the input signal, this positive 
square wave becomes of very short duration and it is difficult for the 
mixer to hold its bias. In operation the steps shown in figure 6 must 
be studied on an oscilloscope and levels adjusted, so that the sundry 
effects, such as those mentioned above, do not interfere with the 
counting of the desired pulses. 

The signal is first amplified to about a lOO-volt pesk, to enable 
the gap to be of-the order of a few volts and still be small compared 
with the peak amplitude. The Helipot A (fig. 4) adjusts the triggering 
point of the gate, that is, E; the two resistances B and C adjust the 
operating points of the two sides of the gate independently and hence 
set the gap width, that is, de. 

Adjustments are made by studying the output of the entire device 
on an oscilloscope, while a sine-wave signal is being fed in. The poai- 
tion of A for 5 = 0, the width of the gap GEj in volts, and the ampli- I 
fication factor giving 5 or the setting of A in volts can be determined 
in this fashion. 

Pulses can be generated in any convenient manner, for example, by 
differentiating a square wave and suppressing the positive pulses pro- 
duced, but for many applications it is quite good enough simply to use 
a sine wave. The frequency was ordinarily chosen to be 2O'kilocycles 
per second, but different frequencies have been used. 

The resulting pulse sequences are counted on a binary scalar counter 
feeding a mechanical register having a maximum rate of 60 per minute and 
capable of registering up to 104. The binary system is standard practice 
and uses diode.coupling. The mechanical counter (a Cyciotron Specialities 
product) can be switched in to count every 25 to 29 pulse by -lAppin@; OntO 
the output of the fifth, sixth, . . ., ninth stages of the binary scalar 
counter. This switching is useful in obtaining more counts on the register 
at low counting rates (in preference to reading the neon light of each 
stage and adding to the register reading) and may also be employed when 
integrating by Simpson's rule with the apparatus. 
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Multichannel Analyzer 
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In the .section "Principles ofApparatus" the basic principles were 
outlined and these are shown pictoriaily in figure2. The incoming 
signal V(t) (fig. 2(a)) is first added to a train.of pulses, having 
a rise time of about 2 microseconds, obtainedby differentiation of a 
square wave of frequency up to 10 kilocycles per second. Figure7 
shows an osc111ogrs.m of a single pulse,.while -figure 8 shows the sum 
of v(t) and the pulses, when V(t) is a sine wave. This step is 
accomplished by means of a differential amplifier (ref.. ti), which 
handles an input-of about 1 volt peak to.peak across 112 megohm, at 
frequencies ranging from l/2 to 50,ooO cycles per second. By means of 
rectification and direct-current restoration, the lower part of the 
signal (fig. 8) is removed and the line A-A is made the zero level, 
leading to the result shown in figure 9, which has a maximum level of 
about 90 volts. The circuit diagram of the pulse amplitude modulator 
is shown in figure 10. 

The modulated pulses are then fed into 10 amplitude discriminator 
channels each consisting of a biased diode (fig. 11) which passes that 
portion of any pulse which exceeds the bias voltage. For example, a 
51-volt pulse will pass a discriminator biased to 59 volts as a pulse 
of l-volt amplitude. -The amplifier which follows each discriminator 
is capable of causing a 0.05-volt pulse to be counted, which corresponds 
to a sensitivity of better than 1 percent of the bias difference between 
adjacent channels. At present the bias levels are set by dry cells, but 
it is intended to replace these by a regulated power supply and a chain 
of precision resistors. To obtain intermediate bias settings (for 
example, if it is desired to double the number of pOir&s read, by 
making two runs) the diode bias ground tap may be shifted. 

To minimize the effectof differences in the characteristics of 
the diodes they are heated by 3.9 volts instead of the usual 6 volts. 
This also reduces the quiescent plate currents. 

Each channel is provided with from one to four commercial electronic 
decade scalars followed by a five-place impulse-type mechanical register. 
The decades operate on the "flip-flop" principle (ref. 5) and indicate 
their count by means of neoh light=-. The mechanical~register is coupled 
to the last decade by means of a.cathode follower and potier tiplifier. 

rl A maximum of log counts m~ty be stored in each channel. 

The analyzer may be used to study all, or only part, of an incoming 
signal according to where the modulator output is set relative to the 
discriminator voltages. When dealing with a complete distribution 
function, the input is disconnected and the modulator output (uniform 
pulses) is adjusted so that the middle channel just3tarts to count. 
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This, as has been explained, is not used as the zero level, which is 
determined later by computation. To count only one-half of the signal 
at a time, the same procedure is followed, except that the output is 
adjusted so that the lowest channel just starts to count. By reversing 
the input signal, the other half may be analyzed, giving a total of 
20 points on the distribution curve. 

A run is made by switching the modulator output to the amplitude 
discriminators for a measured time. 
error is less than l/2 percent. 

For a l-minute run the timing 

ERRORS INAPPARATUS 

Stability 

In the original gate-circuit setup, stability was exceedingly 
important because of the measuring times involved (up to 2 hours in 
some cases) . Long "warm-up" periods were essential, particularly to 
insure the stability of the 5 = 0 level, as this is of paramount 
importance in determining means from the odd moments of the probability- 
density curve since this involves a small difference between large num- 
bers and is extremely sensitive to errors in the 6 = 0 setting. For 
example, the most important skewness factor in turbulent flow (du/dt)3 
is obtained by measuring the distribution of du/dt, p(q) say, and 
forming the integral 

s 
= r13p($ dtl = -OD 

-co s O" q3,(,) dq - q3p($ d7 
0 s 0 

either by computation or in the apparatus. The real difficulty arises 
because the relative position of the zero level of the incoming signal 
and the zero level of the gate or multichannel discriminators may change 
with time. In using the lo-channel analyzer for measuring F(E), it 
was estimated that, in the case of the above skewness factor, a 3-percent 
error would arise if a constant error in the position of the 5 = 0 level 
of l/2 percent of the interval between adjacent channels existed. 

Generally one can achieve sufficient stability, particularly for the 
short times required for a run with the multichannel apparatus, and by 
computing the 5 = 0 axis from the first moment of the probability dis- 
tribution or by equating areas of each half of the distribution function 
(see appendix) the error can be minimized, in the case of the multi- 
channel setup, to 0.1 percent of the interval between channels. 
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Hysteresis . 

Any circuit designed to trigger at a certain voltage will exhibit a 
certain 'amount of hysteresis. Some hysteresis is necessary for stability. 
In effect, the circuit triggers at one voltage when the input is increasing 
and at a slightly lower voltage when the input is decreasing. The effect 

.of this imperfection can be reduced by increasing the voltage of the 
input signal. However, too large an input signal results in a very short 
time of transit through the gap, in the 'case of the original gate circuit, 
and the final output square waves become distorted, 'making it impossible 
to count properly. In the case of the multichannel analyzer, the use of 
biased diodes as discriminators has reduced hyetere-sis to a negligible 
amount. 

, 
Gap Width in Original Gate Circuit' 

The finite width of the gap does introduce a correction, which, 
_ -however, can be-estimated. If the gate width is equal to E, say, then 

what is really measured is the quantity 

P(k) 
1 S+E- 

mea8 = Z s P(V) dS' (17) 
El 

and not p(E) dE = p(E)E. For a small s, however, one evidently has 

s 
E+e 

pk') dE' = p(EJs + p'(g) $ + . . . Z P(S)E p+;+ . . . 
E > 

and for a known distribution the correction can be evaluated. For 
example, if p(E) is nearly Gaussian 

s 
S+c 

p(E) dk = p(C)s 
Icle 

- -+ . . . 
s 2F 

(18) 

. 
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Ordinarily measurements have to be taken up to values of 5 

the order of 2 3 5 i- . Hence the maximum error near the outer edges 
the distribution is of the order 

of 

of 

P(5) mea8 z 1 3 f 

PO --- 2 i-z 

This error may be appreciable if fairly large gate widths are used. 
However, the errors in the dimensionless ratios of moments of p(g), 
namely, the skewness and flatness factors, are much smaller and for the 
most part negligible. For exsmple, the errors in the flatness factors 
can be evaluated from 

P(5) meas ," P(E) 1 - + 
t ) 25 

(19) 

The flatness factor f is 

s 
O3 S4p(S) dE 

f 
= f r2p(s) dq2 L p(g) dt = 5 (20) 

The factor 7 obtained from the measured distribution can be written 

(21) 
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In the correction term a Gaussian distribution can be used and since 

s 

03 
gne-p2E2 de 

0 = p-1 

s 

m 
k n-I,-P2C2 ag r $ 

0 0 

. 

(22) 

it follows that 

= f[+o.133-L) 

Hence even if the gate width E is as large as 20 percent of the 
error in f is small. 

Values for Multichannel Analyzer 

As has been mentioned, the amplitude discrimination is reliable to 
0.05 volt while the maximum pulse amplitude is about 90 volts. The 
amplifiers driving the decade counters can be trimmed for gain, so that 
when all are tied to the same level their readings will not deviate more 
than l/2 percent from each other. Without trimming they are already 
good to 1 percent. 

Using dry cells to set the discriminator levels, a spacing of 
volts between channels can be maintained uniform to l$ percent accu- 

racy with negligible driftover a period of a few months. 

The zero level, as was explained earlier, can be computed to 
0.1 percent of the interval between channels. 

Over-all repeatability has been checked for a sine-wave input and 
found to be fO.l percent of the reading at each level. Measurements 
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of du/dt in a turbulent air stream gave the following scatter of the 
mean values computed from consecutive l-minute runs: 

IFI xkl percent F Z f2 percent 

F Z +-3 percent F Z f4 percent 

Main Improvement Introduced by lo-channel Setup 

It should now be clear that, whereas the gate circuit draws its 
information from selected narrow bands of the incoming signal, the 
lo-channel device utilizes the whole signal. This can, of course, be 
done with the gate circuit by using only one trigger circuit and suit- 
ably rearranging the block diagram of figure 6, but, because of the 
long time involved in measuring, the stability requirements become pro- 
hibitive. Operating 10 channels as a p(k) device with large intervals 
defeats the advantage of using p(E), namely that moments can be com- 
puted in the apparatus by suitable timing (see section "Obtaining Mean 
Values"), since the correction outlined above in "Gap Width in Original 
Gate Circuit" has to be applied and therefore leads to computation work. 
It will be realized, too, that measuring F(e) instead of p(E) leads 
to certain simplifications in circuitry since each channel has to dis- 
tinguish only whether each pulse does or does not rise above its bias 
level. These were the considerations which led to the adoption of the 
present arrangement. 

Other schemes will be found in references 6 to 9, but the present 
arrangement is designed for relatively high counting rates. 

SAMPLE APPLICATIONS 

Sine Wave 

The multichannel analyzer was checked out on a sine wave (190 cycles 
per second). The results for one-half of the signal are shown in fig- 
ure 12, together with the theoretical result, and show close agreement. 

. 
Isotropic Turbulence 

Figure 13 shows the results of measurements of p(E) with the gate. 
circuit, for the axial velocity distribution in isotropic turbulence 
behind a grid. The Gaussian distribution is shown for comparison. 
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Agreement is good and confirms observations by others, especially 
Townsend. Skewness and flatness factors are shown in the table in the 
next section. 

Figure 14 shows F(E) for the same quantity under practically the 
same conditions, as measured on the lo-channel analyzer. 

Isotropic Turbulence, du/dt and d2u/dt2 

Fi e 15 presents the results of measurements of the distribu- 
tion p T- ) of the velocity derivative du/dt, using the gate, while 
figure 1 2 presents the distribution function F(q) for the same quan- 
tity and practically the same conditions. The interesting fact here 
is the asymmetry of the distribution as first demonstrated by Townsend 
(ref. 3). From the distribution p(q) the mean values can be computed. 
However, in order to compute the odd moments, that is, du3/dt for 
example, one has to be very sure about the origin of the coordinate 7, 
that is, about the zero position. Since a stationary process is dealt 
with here, evidently 

s 

m 
W(T) dq 

du -0~ 
at= 00 

= 0 

s 
~(7) dq 

-03 

Hence one has to obtain first the "center of gravity" of the distribu- 
tion and then compute the moments about this point. For the even moments 
this is not very important and a slight shift of the zero point amounts 
to a negligible error. The details of the-computation for the case of 
the lo-channel analyzer are given in the appendix. _ 

The skewness and flatness factors obtained are-shown in the following 
tables. Included also is the factor C defined by 
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. for u and du/dt, 
lo-channel analyzer 

respectively. Results for d2u/Lt2 using the 
are also given. (Also see fig. 17.) 

. The following tables give a comparison of measurements behind a 
turbulence grid with a mesh size M = 314 inch; RM denotes the Reynolds 
number based on the mesh size, and X/M denotes the dimensionless dis- 
tance from the grid position. 

With gate circuit, s = 8,lO0, and X/M = 62: 

S f C 

I U 
I 

0.002 I 2.56 ( 0.944 p ] 

I du/dt I -0 -42 1 3.76 1 1.o2w 1 

With lo-channel analyzer, RM = ll,OC=O, and X/M = 50: 

S f C 

I U 0.006 1 2.73 i 0.g80w 1 

I du/dt -0.439 

I d2u/dt2 I 0.031 1 4.59 1 1.04iJ.q 1 

These values agree well with Townsend's measurements. Townsend 
gives for the skewness factor of du/dt, S.= -0.39, but the meaaure- 
ments plotted, for example in figure 8 of reference 10, range between 
0.39 and 0.50 at least. The flatness factor of u found here is some- 
what less than Townsend's value of 2.9 (ref. 11): Hence the present 
measurements do not agree as well with a Gaussian distribution, for 
which f=3. The ssme result is borne out by. C which should be 

J/ II 2 for a Gaussian distribution. Again the distribution of u does 
give a noticeable difference. The symmetry of the u distribution is, 
however, well shown by S, which is zero to a close approximation. 

Joint Probability Density p(S,q) Prom Zero Counts 

During the investigation of the possibilities of using the number 

of zeros of u(t) to determine (du/dt)2 (or h) it was necessary to 
assume that u(t) and du/dt were statistically independent; that is, 
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it was assumed that P(!.,$ = p,(E)pl(~). Using the present device with ir 
the original gate circuit it---is possible to check how closely this assump- 
tion agrees with the facts, that is, how accurately (du/dt)2 can be 1 
measured from the zero counts. 

The number N(S) of 5 *values of u(t), that is, the number of 
times per second that u(t) passes S, is given by (refs. 1 and 12) 

Denote the probability distribution of 
that u(t) 

u(t), thdTiB, the average time 
spends between 5 and 6 + de, as p,(t) dg. Evidently 

PC(S) can be written 

Taking the ratio N/p1 one has 

(23) 

s 

00 
P,(C) = P(WI) dq 

-0D 

s 03 
N(S) -aa 

(rllP(Lrl) dtl 
-= 
PO(E) 

s 

00 
~(Srrl) dq 

-00 

(24) 

Equation (24) describes the following facts: pO(E) dg denotes the 
time t which u(t) spends between 5 and e + dg, and N(S) gives 
the number of passages through 5 per unit time; hence the ratio 
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gives the average time of a single passage. Hence the average absolute 
slope of a passage is given by 

NW - 
PO(E) 

In general, IQ will depend upon 5; however, if p(E,$ = po(E)pl($ 
then 

(25) 

which is independent of 5. This relation means that, if the probabilities 
of u and du/dt are independent, the absolute mean of du/dt is the 
same at every point of the trace u(t) * 

An example for which this is evidently not true is a simple harmonic 
wave of angular frequency cu; that is 

u(t) = sincut 

Here, N(5) = O/YC is of course independent of 5. However, the time 
spent between 5 and 5 + de increases with 5 and hence 

N(E) 
PT 

-90 if 5-1 

expressing the fact that the mean absolute slope Iiq has its maximum 
at E = 0 and decreases to zero as 5 -1. 
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Without any assumption on the joint probability p(e,$ the mean 
absolute value of 11 can be written - 

or 

sm N(S) dg. \q= -m 
s p,(e) de 

-00 

(26) 

From a measured distribution of N(e) and of pa(k) both the ratio in 
equation (24) and 171 according to equation (26) can be obtained and 
compared. The result is plotted in figure 18; N/p0 at 5 = 0 is 
normalized to 1. If u and du/dt were strictly statistically inde- 
pendent N(t)/pO(S) would be constant and would agree with the ratio 
of the integrals in equation (26). Actually N(S)/pO(E) is not quite 
constant but shows a definite minimum and naaximum, as seen in figure 18, 
and the ratio of the integral's is less than unJ.ty. At large values 
of 5 the errors in N/PO evidently become very large indeed since the 
ratio approaches o/o. Still it is evident that N/p0 does not vary 
much over the most Fsaportant range of 5 near zero where p,(C) is 
large. The general behavior of N/p0 is quite interesting and should 
be studied further. The error in using the value of N(0) to determine 
I';il is quite small as seen from figure 18 (namely, I - 0.98 = 0.02). 

There remains one other correction which.has to be- applied to h 
measurements from zero counts. Evidently the zero counts furnish 
directly only the mean slope of u(t), that is, 1 du/dtI. On the other 

hand h is directly related to iGiG* Hence one has to relate 

1-1 to i(d~//dt)~. In the simplest formulation one assumes ~~('1) 
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to be Gaussian and then the ratio 

du 
I I dt= 2 Fir-7 du 

3-t dt 

Now pl(qI1) is not quite Gaussian and hence the relation between Id-1 

and is will differ from 

Then the formula employed 
should read 

where U denotes the mean 
reduces to the one used in 

25 

l--T 23-c. Let 

in the measurement of h by counting zeros 

N2(0) = 3 

C22SCh2 

speed. For C = 
reference 1 

U2 
N2(0) = - 

l&%2 

m the formula evidently 

(27) 

The factor C was evaluated from the measured distribution pi(q) as 
has been shown in the preceding table: 

1 - = 0.97 C 

and hence 

N2(0) 
U2 

= 0.94 - 
lt2A2 

(28) 
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Consequently in h2 about 6 percent error results from the use of the 
simple formula, equation (27). Thus h would come out--too large using 
equation (27). This is an error in the right--direction since the measure- 
ments of references 1 and 13 consistently give too large values of h as 
calculated from equation (27). The correction due to the weak statistical 
dependency of u and du/dt is, however, in the other direction and the 
combined effect of these two errors is insufficient to explain the dif- 
ferences found in reference 13 between h from zero counts and A 
measured independently. It seems more likely that these differences can 
be.traced to small systematic errors in the equipment, for example, insuf- 
ficient resolution. 

Vortex Street 

Figure 19 shows the distribution function, by the lo-channel analyzer, 
obtained in a vortex street behind a cylinder at a Reynolds number of 100. 
The hot-wire output was a very stable; almost triangular wave. A true 
triangular wave would give a straight-line distribution function. The 
rounded peaks of the actual wave form give deviations from a straight 
line near the ends, where the distribution curves inward as in the dis- 
tribution function for the sine wave. This work was done in conjunction 
with the study of wakes (ref. 14). 

California Institute of Technology, 
Pasadena, Calif., September 29, 1952. 
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APPENDIX 

CALCUiXTION OF POSITION OF 5 = 0 AXIS 

Figure 20 is to be used in conjunction with this discussion of the 
calculation of the 5 = 0 axis. The distance E of the zero axis from 
channel 5 is found by the following method. 

For zero average value of the input signal, 

Al+ al = % + a2 

52 - a1 = Al - & 

where Al and A2 are determined from the data by use of Simpson's rule. 

The curve between channels 5 and 6 csn usually be accurately approxi- 
mated by a straight line. Therefore, al and &2 are computed by using 
the trapezoidal rule as follows: 

al s $ (hl + 21)E 

52 = $2 + 240 - E) 

2(+ - q) = lye + Z2 - (hl + +)E - (21 + z2)e 

= h2+ 22 - (hl + h2 + 1)~ 

But, 

21 = hl + (1 - k - hl)s 

22 = 1 - 21 
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Substituting, 

.- I'WA TN 3037 

2 &2 ( - al) = b + 1 - hl + (hl + $ - 1)~ - .(hl + h2)e - E 

2(A1 - A2) = h;! - hl+ 1 - 2~ 

Therefore, 

%-FL+1 E:= 
2 - (Al - A2) 
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(a) Fluctuating voltage. 

(b) Square-wave signal from gate circuit. 

(c) Signal from pulse generator. 

t 

(a) Signal produced by mixing signals from gate 
and pulse-generator circuits. 

Figure l.- Principle of gate circuit. 
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zt 
(a) Fluctuating voltage. 

(b) Unmodulated pulses. 

(c) Modulated pulses. 

II t 

(d) Wave pattern from discriminator. 

Figure 2.- Principle of lo-channel wyzer. 
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REGION OF INTEGRATION 
IN EQUATION (IS) 

Figure 3.- Typical. distribution function. 
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OUTPUT 
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@h?I GROUND 
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POTENTIOMETER FOR SETTING g VALUES 

TRIGGERING ADJUSTMENT fOR CIRCUIT (1) 

TRIGGERING ADJUSTMENT FOR CIRCUIT (21 
OUTPUT EQUALIZATION CONTROL 

METER TO ENABLE CURRENT IN m TO BE KEPT CONSTANT 

Figme 4.- Double-trigger circuit of gate. (K indicates thousand; 
WW, wire-wound resistor.) 
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I NVERTER 

Figure 5.- Circuit diagrams of inverter and mixer. (K indicates thousand.) 

INPUT 
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“: 
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- J 

OUTPUT 

t5 x 
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J - L 

B 1 p- r 
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Figure 6.- Block diagram of apparatus. 
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L- 80245 
Figure 7.- View of a single pulse. 
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L-80246 
Figure 8.- Differential anplifier output for a she-wave input. 
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Figure 9.- 
~-80247 

Modulator output for a sine-wave input. 
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Figure lO.- Chcult diagram of pulse amplitude modulator. 



40 NACA TN 3037 

MODULATOR MODULATOR 
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c 

Figure Il.- Pulse height discriminator. 
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Figure 12.- Distribution function for a she wave. 
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Figure 13.- Distribtiion of u in isotropic turbulence (corrected for gap 
width). % = 8,100, X/M = 62; C = O.wm, s = 0.~02, f = 2.56. 

6 



I * 

-0 -4 - 

Figure 14.- Distribution flu&ion for u(t) In isotropic turbulence. 
% = ll,OOO, X/M = 50, M = 1.68 centimeters; C = 0.!3!30&$, 
s = 0.006, f = 2.77. 
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Figure 15.- Distribution of du/dt in isotropic turbulence. s = 8,100, 
x/M = 62; c = 1.02m, s = -0.42, f = 3.76. 
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Flgure 16.- Distribution function for du/dt in isotropic turbulence. 
s = U,OOO, X/h = 50, M = 1.68 centimeters; C = 0.5%4$7i5, 
s = -0.439, f = 3.80. 
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Figure 17.- Distribution function for &%/at2 in isotropic turbulence. 
l$ = l.l,WO, X/M = 50, M = 1.68 centimeters; C = l.dc$QE, S = 0.031, 

f = 4.59. 
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Figure 18.- Plot of N(E)&(S). 
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Figure lg.- Distribution function for u(t) in vortex street behind 
circular cylinder of diameter 
x/d = 6, r/d 

d ataReynolds nuder R =lOO. 
= 1.3; c = 1.15, 6 = 0.08, f = 1.7. 
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4 5 6 7 

CHANNEL 

Figure 20.- Calculation of 5 = 0 axis. Al, A2, al, a2, areas; 
21, 22, hl, h2, 8, lengths. 
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